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We apply the method of contraction, familiar in statistical mechanics applications, to reduce the Fisher
equation describing population growth and dispersal in the space-time domain to an equation in the time
domain. The resulting equation is identical to the well-known logistic equation with an additional correction
term that depends on the global solution to the Fisher equation. This equation provides a possible basis for
explaining why logistic dynamics has not always described experimental data and also for then formulating
models that generalize the logistic equation.
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I. INTRODUCTION

A primary goal of statistical mechanics is the elucidation
of the observed macroscopic behavior of systems both in and
displaced from equilibrium. This includes determining the
limitations of macroscopic laws, e.g., the time and length
scales for which they provide a valid description, the gener-
alization of these laws to regimes in which they are not ap-
plicable, as well as the relationship between the parameters
they include with the underlying microscopic properties. One
of the notable areas of success has been in establishing the
conditions for which the various macroscopic equations de-
scribing nonturbulent, low density fluid flows are valid and
in providing generalizations to these equations, e.g., in shock
and boundary layers[1–3]. The procedure for this is to con-
tract the more basic description provided by the Boltzmann
equation, reducing the level of detail from the microscopic to
the macroscopic level. Here we apply the method of contrac-
tion to the description of population dispersal and growth.

The simplest model describing regulated single species
population growth is the logistic equation(LE) [4] that, de-
spite obvious defects, provides a basic platform from which
more detailed models can be formulated. The importance of
the topic we consider here is clear, because experimentally
measured population numbers versus time yield excellent fits
to logistic dynamics for many biological species, such as
humans[5,6], bacteria[5,6], fruit flies (Drosophila) [5], and
virus strains[7], but there are also many experimental data,
such as for blowflies(Lucilla cuprina) and many bird species
[8–10] which do not agree with predictions based on the LE.
The logistic equation is similar to, but simpler than, the rate
equations[11] used to describe epitaxial crystal growth in
that in both descriptions only the time dependence of the
population is considered. Thus, any effects of spatial inho-
mogeneity that are mediated by diffusion, and possibly con-
vection, are omitted at this most primitive level. A conse-
quence of this simplification is that the equation of evolution
in the case of the LE is an(easily solved) ordinary differen-
tial equation and only growth, but not dispersal, is described.

A higher level of description can be obtained by consid-
ering the space-dependent population density, the evolution

of which is described by the Fisher equation(FE), which is a
nonlinear partial differential equation[12]. Although the FE
has been extensively studied, the few exact results we are
aware of are the steady state solution for a finite domain
embedded in a hostile environment[13] and the special trav-
eling wave solution the evolves from some unspecified initial
condition[14]. Most of the literature pertaining to the FE has
focused on technical properties such as the existence and
stability criteria, especially for the class of special long-time
solutions that describe traveling waves[14,15]. Surprisingly,
it appears that there has been no attempt to determine the
connection between the FE and LE descriptions. Such a con-
nection would be useful in providing a better understanding
of the conditions for which the LE might be expected to be
valid, just as the Boltzmann equation has shed light on when
the Euler equations are applicable or must be superseded by
the Navier-Stokes equations(or where neither are valid as in
shock, boundary, and initial layers) [1–3]. Establishing this
connection is the purpose of this paper. In Sec. II we con-
sider the contracted FE for a large closed system and find
that the LE must be modified by a term resembling the vari-
ance of the FE density. In Sec. III we consider the qualitative
behavior of this correction term for initial conditions and
times long enough so that a traveling wave solution has
evolved, and show that this leads to a marked reduction in
the approach to the equilibrium population.

We then conclude in Sec. IV with a discussion of how the
result found here might be used to formulate generalizations
of the LE.

II. CONTRACTING THE FE

The FE can be written in terms of dimensionless time and
space units as[14]

] n

] t
; nt = nxx + ns1 − n/kd, s1d

with n the population density andk the corresponding carry-
ing capacity density. The evolution of the total population,
Nstd=edxn is often assumedswhen boundary effects can be
ignored as in a large closed systemd to be described by the
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dN

dt
= Ns1 − N/Kd, s2d

whereK is the carrying capacity of the environment which
extends from −LøxøL so thatK=edxk. We will consider
systems large enough so that, operationally, in the limits of
some integrals,L→`, but otherwise quantities such as
K /2L=k are finite. The rational for Eq.s2d is the observation
that it leads to the self-limiting population growth seen in
many systems, and provides a simple model for predicting
future growth as well as the starting point for more refined
model building f4,16g. In the latter respect the connection
between the LE and FE appears to have been overlooked or
ignored by the population ecology community whereas it
suggests itself immediately to those familiar with statistical
mechanics. To provide such a connection we integrate the
FE to find sas noted above, all spatial integrals extend over
the entire real lined

dN

dt
= N −E dx

n2

k
, s3d

where we require thatn andnx vanish on the boundariessthe
system is closedd. This is clearly not the LEf17g, and indi-
cates that, as often occurs in statistical mechanics, we cannot
obtain a closed equation following contraction without intro-
ducing approximations that effect a closure. Alternatively, it
may be shown that there are conditions for which closure
cannot be attained and a contracted description is not appli-
cable.

The “missing link” here is provided by the identity

k−1E dxnn=
N2

K
+ kE dxSn

k
−

N

K
D2

, s4d

so that

dN

dt
= SN −

N2

K
D − kE dxSn

k
−

N

K
D2

. s5d

The last term on the right-hand side of Eq.s5d provides the
correction necessary to connect the LE with the FE. This can
then serve as a basis for attempts to formulate models that
generalize the LE, e.g., by replacing this term with some
function of the time, and in Sec. IV we provide a simple
example of how this might de done. Before doing this we
will assess the possible quantitative significance of this cor-
rection term for situations where a traveling wave evolves
f14,15g.

III. ANALYSIS OF EQ. (5) FOR TRAVELING WAVE
SOLUTIONS

The form of Eq. (5). indicates that the rate of growth
experienced byN as predicted by the LE, and therefore the
values ofNstd, will only be an upper bound in the ecologi-
cally interesting case where the densitynsx,td is not uniform
throughout space. The issue we address here is that of the
possible significance of the correction toNstd implied by Eq.
(5). In what follows we make use of the result of Kolmog-
oroff et al. [18], who showed that a for specified class of

ecologically interesting, i.e., compact(nonvanishing only on
a finite connected domain) initial conditions the solution of
the FE evolves after an initial transient period as left and
right moving traveling waves withn<k behind these waves
and n<0 ahead of the advancing fronts. We consider here
the case of an initial condition symmetric about the origin
x=0 so that after an initial period of evolution, ofx.0 there
is a region 0,x,L1std wheren<k, a transition region of
length LT in which n decays to zero, and the regionL1
+LT,x,L in which n<0. The wave, and henceL1, moves
to the right with speedc=2 [or if we write the FE in dimen-
sional units,nt=Dnxx+rns1−n/kd with D the diffusion coef-
ficient and r the intrinsic growth rate,c8=2srDd1/2]. The
transition length isLT=4c or 4c8 in dimensional units[14].
For x,0 the density profile is the mirror image of that de-
scribed above for positive values ofx.

Using the above information we can compare the two
terms on the right--hand side of Eq.(5) for times long
enough that a traveling wave solution has evolved. We will
approximate the right moving wave form by a straight line of
slope −k/LT connectingx=L1 and x=L1+LT so that in the
transition regionn=kf1−sx/LTd+sL1/LTdg, with n=1 behind
the wave andn=0 ahead of the wave. The population is then
N=2L1k+LTk (including contributions from both the ±x re-
gions), so that

NS1 −
N

K
D = KFL1

L
+

LT

2L
− SL1

L
+

LT

2L
D2G . s6d

When the population reaches its carrying capacityK the
space is uniformly filled,L1→L, and there is no transition
region, and both sides of Eq.s6d are identically zero.

We compare this term with the correction term, which his
composed of three distinct parts as described above. For
0,x,L1 this is

2

k
E

0

L1

dxFk −
N

2L
G2

= K
L1

L
F1 +SN

K
D2

−
2N

K
G , s7d

where the prefactor 2 on the left side accounts for the con-
tribution from the corresponding region wherex,0. Simi-
larly, using the approximation forn given above in the tran-
sition region

2

k
E

L1

L1+LT

dxFn −
N

2L
G2

= K
LT

L
F1

3
−

N

K
S1 −

N

K
DG . s8d

Finally, ahead of the wave.

2

k
E

L1+LT

L

dxF N

2L
G2

= KF1 −
L1

L
−

LT

L
GFN

K
G2

. s9d

Combining the result of Eqs.s7d–s9d and substituting forN
we find the correction term, which we denoteCstd sthe time
dependence is throughL1d, given as
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Cstd = KFL1

L
− SL1

L
D2

+
LT

3L
−

L1LT

L2 − S LT

2L
D2G , s10d

which also goes to zero asL1→L and the contribution from
the transition region vanishes. Combining Eqs.s5d, s6d, and
s10d, we then find

Nt =
KLT

6L
F1 +

3L1

L
G . s11d

In typical situations where we have a traveling wave with
LT/L!L1/L!1 we see that Eq.s11d predicts a much slower
approach to quilibrium than the LE for whichNt=OsL1/Ld.
We can conclude that there are conditions for which the cor-
rection to the LE is quantitatively significant.

IV. DISCUSSION

The main result of this paper is Eq.(5), which connects
the LE to the FE. Although this is a formal result, we believe
it to be of significance for two distinct reasons. First, it pro-
vides an explicit connection between the LE and the FE, and
indicates why the former may not be valid in situations
where the latter is valid. In addition, this can provide guid-
ance to attempts to generalize the LE in situations where the
FE provides a valid description. One apparent qualitative
feature of Eq.(5) is that for every value ofN it predicts a rate
of population growth less than that predicted by the LE.
Since the correction term in Eq.(5) decays from some initial
value to zero as the traveling wave solution develops and
progresses, the simplest analytically tractable model that in-
corporates these features as well asdN/dt=0,N=0,K is

dN

dt
= N −

N2

K
− aSN −

N2

K
Dexp −bt, s12d

with a andb parameters that reflect the initial conditionsad
and the relaxation time for the correction term to decaysbd.
The solution of Eq.s12d is

Nstd = Ns0d/fNs0d + sK − Ns0dde−teas1−exp−btd/bg. s13d

Bearing in mind that Eq.s12d, like the LE and its generali-
zations, is a model incorporating parameters that must be
determined from data in specific applications, in Fig. 1 we
show the differences between LE solution and the solution to
Eq. s12d for two choices of the model parameters with
Ns0d=10−3 K. For smalla and moderateb we see that the
solution of Eq. s12d only slightly lags the LE solution;
however, increasinga and decreasingb results in an in-
creased lag.

In summary, it has been long known that the LE does not
follow by contraction from the FE. We have determined the
explicit connection between these two levels of description,
introducing a correction term to the LE that can provide an
alternative starting point for the development of more accu-
rate phenomenological population growth models.
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FIG. 1. 103N/K vs time for solutions of the logistic equation
(-----) and the solutions of Eq.(12) with a=0.1 andb=1.0 (curve
A) and a=0.5 andb=0.5 (curve B). The initial condition in each
case isNs0d=10−3 K.
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